
Topaz: Declarative and Verifiable Authoritative DNS at CDN-Scale
James Larisch∗
Harvard University

Tim Alberdingk Thijm∗

Princeton University
Suleman Ahmad

Cloudflare, Inc.

Peter Wu
Cloudflare, Inc.

Tom Arnfeld
Cloudflare, Inc.

Marwan Fayed
Cloudflare, Inc.

ABSTRACT
Today, when a CDN nameserver receives a DNS query for a cus-
tomer’s domain, it decides which CDN IP to return based on service-
level objectives such as managing load or maintaining performance,
but also internal needs like split testing. Many of these decisions
are made a priori by assignment systems that imperatively generate
maps from DNS query to IP address(es). Unfortunately, impera-
tive assignments obfuscate nameserver behavior, especially when
different objectives conflict.

In this paper we present Topaz, a new authoritative nameserver
architecture for anycast CDNs which encodes DNS objectives as
declarative, modular programs called policies. Nameservers execute
policies directly in response to live queries. To understand or change
DNS behavior, operators simply read or modify the list of policy
programs. In addition, because policies are written in a formally-
verified domain-specific language (topaz-lang), Topaz can detect
policy conflicts before deployment. Topaz handles∼1MDNS queries
per second at a global CDN, dynamically deciding addresses for
millions of names on six continents. We evaluate Topaz and show
that the latency overheads it introduces are acceptable.

CCS CONCEPTS
• Networks → Naming and addressing; Programmable net-
works; • Software and its engineering → Formal software
verification.

KEYWORDS
authoritative DNS, CDN, formal verification, declarative, network
policies
ACM Reference Format:
James Larisch, Tim Alberdingk Thijm, Suleman Ahmad, Peter Wu, Tom
Arnfeld, and Marwan Fayed. 2024. Topaz: Declarative and Verifiable Au-
thoritative DNS at CDN-Scale. In ACM SIGCOMM 2024 Conference (ACM
SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3651890.3672240

1 INTRODUCTION
Authoritative DNS nameservers originally executed a single func-
tion: Given a query for a server’s domain name, return the server’s
∗Authors worked on this project during PhD research internships at Cloudflare, Inc.

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672240

IP addresses. Early on, server IP addresses rarely changed, so each
nameserver maintained a static map from domain name to IP. To
make changes, operators modified the nameserver’s static name-
to-IP assignments.

Domain names and nameservers have since evolved away from
their initial designs. Instead of representing physical servers, do-
main names now represent application or service endpoints. Instead
of using nameservers that statically map domains to server IP, many
applications today employ CDNs [23], whose nameservers return
CDN IP addresses when queried for application domains, allowing
the CDN to intercede on application traffic. When assigning an
IP address, CDN nameservers often consider the context of the
query, not just the queried name. For instance, CDN nameservers
may assign IP adresses to balance load [8], direct end users to prox-
imate datacenters [11, 35, 42], avoid network saturation [5, 19],
route around network path issues [9, 44], or minimize energy con-
sumption [31]. However, CDNs may also enforce internal business
objectives to, for example, isolate customers in a billing tier onto a
single IP prefix for network provisioning, or direct some traffic to a
new service endpoint for testing.

Many CDNs, both unicast and anycast, manage their DNS ob-
jectives using centralized assignment systems, among other compo-
nents. An assignment system is a service that periodically matches
query context or metadata (e.g., name, resolver location, or time of
day) with CDN IP addresses. For instance, Akamai’s assignment
system periodically pairs DNS resolvers with the unicast IP of the
closest CDN datacenter [11, 33, 42]. Assignment systems push the
resulting pairwise mappings to CDN edge nameservers, which use
the mappings (and sometimes local information such as per-server
load [17]) to select and return the most appropriate IP addresses
when they receive a DNS query. Anycast CDNs also use assignment
systems to enforce their business objectives.

Unfortunately, objectives fed into assignment systems often con-
flict. Two (or more) objectives conflict when they each stipulate
that the same subset of traffic be assigned different IP addresses. For
instance, consider two operational objectives of equal priority spec-
ified by different teams: All queries received in France datacenters
should receive IP address x, and all queries received in European
Union (EU) datacenters should receive IP address y. What should
happen to queries received in Paris, since it is in both France and
the EU? By mapping Paris traffic to either x or y, the assignment
system favors one objective over another, resulting in a bug.

Our experience at a large anycast CDN has shown us that assign-
ment systems obfuscate, rather than elucidate, conflicting objectives.
Once they generate and push the query-IP mappings to edge name-
servers, the reasons for generating those mappings (and ignoring
certain objectives) are lost or difficult to track down. As a result,
nameservers cannot be debugged directly, since they just enforce

891

https://doi.org/10.1145/3651890.3672240
https://doi.org/10.1145/3651890.3672240

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Larisch et al.

behavior decided imperatively long before. Furthermore, to the
best of our knowledge, no CDN assignment system automatically
detects objective conflicts at assignment time.

In this paper, we design and deploy Topaz, a new CDN archi-
tecture for managing authoritative DNS objectives declaratively.
Using Topaz, a CDN’s DNS objectives previously fed into imperative
query-IP assignment systems are instead expressed by operators
as named, modular programs called policies. Policies are executed
directly by edge nameservers in response to live DNS queries.

Topaz’s declarative design has three key features. First, compared
with imperative mapping systems, executing declarative objectives
directly makes DNS behavior easier to understand and modify. In
Topaz, all DNS behavior is specified in a single file that can be
easily understood and changed by operators (often non-experts),
and changes to this file are deployed globally in minutes. Second,
because nameservers execute this file directly, operators can debug
nameserver behavior by reading or executing this policy file locally,
using logged or sample queries as input. Finally, Topaz forces oper-
ators to explicitly and unambiguously specify the priority of new
policies by positioning them appropriately in the ordered policy
file—making it the single source of truth. Strict ordering encourages
policy authors to consider how their policy interacts (or conflicts)
with existing policies. For example, in the aforementioned France
or EU case, the ‘winning’ policy is whichever is ordered first.

In addition, by encoding DNS behavior as a list of programs,
Topaz can formally verify that the programs (and thus DNS behav-
ior) are correct, and that policies do not conflict. To accomplish
this, operators express Topaz policies in a domain-specific lan-
guage called topaz-lang, which is accompanied by a formal model
checker. The model checker, called Topaz verifier, can detect when
one policy would nullify another (e.g., if the EU policy is ordered
before the France policy). This property is called reachability—that
there exists a DNS query to trigger every policy, given all policies or-
dered before it. Beyond reachability, Topaz also verifies satisfiability
and exclusivity.

We believe that much can be learned from Topaz’s design. How-
ever, we note that Topaz was designed for a global anycast CDN. In
contrast to unicast or regional anycast systems, the target CDN does
not use DNS for proximal routing or load balancing. Instead, it relies
exclusively on BGP anycast for proximal routing, and balances load
by moving application traffic between datacenters at layers 3 and
4 [15, 49] after it reaches an edge server. As a result, the CDN uses
DNS to: (i) ensure traffic for customers using dedicated or static
IP addresses get their reserved IPs; (ii) distribute remaining traffic
according to customer service-level agreement (SLA) requirements;
and (iii) satisfy an ever-changing and ever-growing list of business
exceptions and edge-cases, e.g., split-testing new services. Topaz
was built to service the latter two use cases. For more context, all
CDN edge servers execute a single software stack, which means
the default deployment model is that every program is executed on
every server.

At time of writing, Topaz is deployed and operators are using
it to incrementally replace the relevant parts of the CDN’s legacy
assignment system. Topaz currently receives ∼1M DNS queries
per second (qps). There are seven active, and at least 10 planned,
deployed policies. topaz-lang and the formal verifier have also

been fully deployed, and are currently used by non-experts to write
and verify policies.

To summarize, this paper makes the following contributions:
(1) We present Topaz, a new architecture for declaratively de-

ploying authoritative DNS objectives at CDN-scale. We show
how Topaz both improves transparency and enables new
kinds of objectives that were not possible or very difficult to
deploy with an assignment system.

(2) We apply the match/action pattern found in many network-
policy languages [3, 10, 13, 24, 43] to specifying authoritative
DNS behavior at a large-scale CDN.

(3) We present topaz-lang, a domain-specific language (DSL)
designed for expressing and formally verifying DNS objec-
tives. We describe how topaz-lang makes changing DNS
objectives fast and safe.

This work does not raise any ethical concerns.

Outline. We proceed with additional background (§2) before de-
scribing the Topaz architecture (§3). We then present representative
examples of policies deployed at a CDN (§4), which motivate our
DSL, topaz-lang (§5), and its formal verification (§6). We then
evaluate Topaz (§7) and discuss deployment experience (§8) before
related work (§9) and concluding remarks (§10).

2 MOTIVATION & BACKGROUND
Our work is motivated by operator experience at a reverse-proxy
anycast CDN that manages millions of customer websites. The
CDN operates a global edge network with datacenters in 310+ cities
across 120+ countries. In this section, we describe DNS at CDNs
before discussing the problems with existing CDN nameserver
architectures.

2.1 DNS at CDNs
Many web applications today rely on third-party services for their
authoritative DNS. Such services run authoritative nameservers
that receive A or AAAA queries for customer domains, and return
the customer’s preset IP(s) in response.

Reverse proxy CDNs also provide authoritative DNS, but their
nameservers respond with CDN (rather than application) IP ad-
dresses to provide caching, security, and other services on behalf of
the customer (see Figure 1). Customers delegate their domains to
the CDN’s nameservers like any other authoritative DNS service.

Each CDN, then, must determine how to best map incoming
DNS queries for customer domains across their global IP space.
Often, the CDN chooses these IP addresses in order to, for instance,
maximize performance, minimize utilization, or both. For instance,
unicast CDN nameservers may return the IPs of the CDN datacenter
topologically closest to the resolver that made the query [11, 35, 42],
regardless of the domain requested. In contrast, anycast CDNs
(which get proximal request-routing “for free” [9]) may assign
queries to distinct “rings” of anycast IPs to balance load [19]. Indeed,
to illustrate to what extent CDNs can decouple names from IPs, it
has been shown that 20M domains can be served from a single IP,
or an IP selected at random [18].

Our target CDN uses DNS primarily to satisfy internal and ex-
ternal service-level objectives, rather than for proximal routing or
load balancing. The CDN uses anycast globally, which means it

892

Topaz: Declarative and Verifiable Authoritative DNS at CDN-Scale ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Figure 1: DNS at a reverse-proxy CDN. 1 CDN authoritative
nameservers respond to resolver queries for customer domains (e.g.,
example.com) with the CDN’s own addresses. 2 Client requests for
the domain are routed to a CDN edge node for caching and security
services; the CDN’s authoritative nameserver and HTTP server can
coexist and be co-located. 3 Requests may be forwarded to the
customer’s origin server before the 4 response is sent to the client.

relies on BGP to route client requests to the proximal datacenter.
Furthermore, it balances application traffic between datacenters
using a layer 3/4 load-balancer [15, 49] . But the CDN has many
different teams, each with different DNS-related needs. As a result,
it uses DNS to ensure customer traffic is given addresses (and thus
priority) corresponding to to their service level agreements (SLAs).

2.2 A Priori Assignment System Limitations
Many CDNs achieve some of their objectives using an assignment
system that ingests both CDN objectives and the set of CDN IPs, and
then outputs mappings from DNS query metadata to IP address(es).
Query metadata may include the queried name (e.g., example.com)
and other information, such as a (resolver) location or internal meta-
data attached by the CDN (e.g., customer priority). The assignment
system distributes the resulting mappings to edge authoritative
nameservers. When an edge nameserver receives a query, it uses
that query to look up the corresponding IPs in the static mappings,
which it returns to the resolver. Before Topaz, our target CDN em-
ployed an assignment system that mapped customer domains to
the IPs matching the customer’s SLA. As the business objectives
grew in number and diversity, so did the system’s limitations.

Unfortunately, different operator objectives can conflict and lead
to bugs. An objective conflict occurs when different objectives
operate on overlapping classes of DNS queries. This often hap-
pens because different objectives are dictated by different teams
(some CDNs have thousands of employees) that have not manually
checked whether their policies conflict. For instance, consider two
different objectives that each requires that all queries received in
the a certain location receive certain (different) IP addresses. As-
signment systems are forced to make a zero-sum choice: one of
those objectives must win and the other must lose, since queries
in that location can only be given one set of IPs. This choice is
embedded into the resulting static assignments distributed to the
edge.

Objective conflicts can be difficult to detect and debug for multi-
ple reasons. First, the assignment system itself cannot determine if,

1 def match(query , config) {
2 return query.Name == config.Name
3 }
4 def response(query , config) {
5 return (config.IPv4s , config.IPv6s , config.TTL)
6 }

(a) DNS lookup expressed as policy match and response functions.

1 trivial -policy:
2 Name: "example.com"
3 IPv4s: ["100.64.0.1" , "100.64.1.1"]
4 IPv6s: ["2001:0:0 ea2 ::0001" , "2001:0:0 ea3 ::0001"]
5 TTL: 300

(b) Conventional DNS mapping expressed as a policy configuration.

Figure 2: A conventional DNS lookup expressed as a Topaz policy
has two components: (a) the lookup expressed by match and re-
sponse functions, and (b) the policy’s parameterized configuration.

or to what degree, the objectives overlap, so operators receive no
feedback upon entering their objectives. Second, the place at which
authoritative DNS decisions are made (the assignment system) is
far from where they are enforced (the edge nameservers). The gap
makes it difficult both to verify that nameservers are behaving as
expected, and to debug nameservers when a problem arises.

At the target CDN, before Topaz, DNS-driven business objectives
frequently conflicted with one another, leading the assignment sys-
tem to silently ignore certain objectives. As a result, operators were
forced to manually find and arbitrate the objective conflicts caused
by different stakeholders. This both burdened developers with re-
solving contradictory business objectives and caused frequent frus-
tration when conflicts were not caught and certain objectives were
ignored. As the sets of stakeholders and objectives at a CDN grows,
so does the complexity of managing and understanding its authori-
tative DNS behavior. In describing the existing assignment system,
one engineer declared: “I don’t want this system to exist anymore.”

3 INTRODUCING TOPAZ
We developed Topaz to make authoritative DNS behavior at CDNs
more transparent and understandable. To achieve these goals, Topaz
encodes each distinct stakeholder objective as a program called
a Topaz policy. Topaz policies are executed directly in response
to DNS queries by Topaz-edge, an edge service called by CDN
nameservers. Policies are submitted to, and distributed to Topaz-
edge by, a centralized service called Topaz-core. The two services
together comprise ∼8K lines of Go code. The overall architecture is
depicted in Figure 3 and described below in detail.

3.1 Topaz Policies
We designed Topaz to execute DNS objectives encoded as programs
called policies. A Topaz policy consists of amatch and response
function, which both operate over incoming DNS queries. The
match function returns a Boolean indicating whether or not the
policy should execute on the received query. The response function
returns a 3-tuple consisting of an array of IPv4 addresses, an array
of IPv6 addresses, and a time-to-live (TTL) value. Broadly, then, a
Topaz policy is a program that encodes (i) a class or set of DNS
queries identified by metadata; and (ii) how DNS response values

893

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Larisch et al.

should be selected for that set of queries. This stateless match/re-
sponse paradigm has not only proven comprehensible for software
engineers, but also facilitates formal policy verification (§6).

We illustrate the simplest Topaz policy, which emulates tradi-
tional name-IP addressing, in Figure 2a. This policy matches all
queries for the parameterized domain name and, if a match is found,
respondswith parameterized address(es) and TTL. During execution,
Topaz-edge retrieves policy-specific parameters from that policy’s
corresponding (YAML) configuration, shown in Figure 2b. When
operators need to change the domain name used, they modify the
policy’s configuration without having to change the policy’s code.

3.2 Topaz-edge
Policies are executed directly on the edge by a service called Topaz-
edge. When a CDN edge nameserver receives a DNS query, it at-
taches customer-specific metadata (e.g., an ID or SLA), then for-
wards the query to Topaz-edge.1 Topaz-edge executes the ordered
list of policies, with the received query, until a match is found. Upon
finding a match, Topaz-edge calls that policy’s response function
and returns the resulting tuple to the nameserver. The nameserver
wraps the resulting data in a valid DNS record and returns it to the
resolver. If no match is found, Topaz-edge notifies the nameserver
to fall back to a default set of static assignments.

Topaz-edge was consciously implemented as a separate service
to isolate the deployment paths of our experimental service from
the production nameserver. The choice balanced organizational and
performance tradeoffs: Nameserver developers can focus on DNS
protocol correctness and performance, while Topaz operators can
focus on expressing and deploying business logic (objectives). How-
ever, this separation does introduce inter-process communication
(IPC) overhead, which we evaluate in §7.

3.3 Topaz-core
Operators first submit policy changes to a separate, centralized
service called Topaz-core. Topaz-core maintains a YAML file which
includes all deployed policies and their respective configurations.
To make changes to authoritative DNS behavior, operators edit (e.g.,
add, remove, reorder, change) policy configuration values in the
list directly. Topaz-core detects changes to the configuration file,
and then writes the content to a global low-latency key-value store
called Quicksilver (QS) [37] maintained by the CDN. Topaz-edge
periodically polls QS for policy configuration changes and, when
detected, updates its list of policy configuration values accordingly.
QS ensures that changes are transactional—Topaz-edge will either
retrieve the complete old or complete new configuration when
polling.

The order of policy blocks in the YAML file specifies the order
that Topaz-edge executes policies. We considered other data struc-
tures but found that a single ordered list achieves simplicity without
ambiguity—it encourages developers to consider how adding or
changing a policymay change thematch-rate of subsequent policies.
To guarantee that adding new policies does not ‘squash’ existing
ones, we implemented formal verification of policy configurations
(§6).

1Edge servers in the CDN are homogeneous: each runs the same set of system services, including
both Topaz-edge and the authoritative nameserver service.

Figure 3: The Topaz architecture. Policy configurations are up-
loaded to Topaz-core. Each policy’s configuration block is option-
ally augmented and validated before written to the edge-wide key-
value store QS. Topaz-edge, on all edge servers, periodically polls
QS for updates. Topaz-edge receives DNS queries from the author-
itative nameserver, and executes every match function until one
returns true, followed by that policy’s response function. Values
are returned to the nameserver to construct and return the query’s
response.

Topaz-core performs two additional steps after receiving con-
figuration changes and before pushing those changes to the edge.
First, it executes each policy’s (optional) augmentation function.
Augmentation functions supplement static policy configuration
with dynamic data. For example, as shown in Figure 3, a policy’s
augmentation function may retrieve the set of datacenters that are
active or in a region. Augmentation functions free authors from
having to manually track the operational state of the global network
in a policy’s configuration. Second, after augmentation, Topaz-core
executes each policy’s (optional) validation function. Validation
functions perform type- and syntax-checking; for example, ensur-
ing that a percentage value in a configuration is between 0 and 1.
Only after both succeed (and, as we describe later, changes have
been formally verified) does Topaz-core writes the final configura-
tion file to QS.

3.4 Code versus Configuration
As described, Topaz separates policy configuration from policy
code. Each policy’s match and response functions (Go code) are
implemented in the Topaz-edge repository. Changes to these func-
tions, i.e., changing the way an IP address is selected from a set,

894

Topaz: Declarative and Verifiable Authoritative DNS at CDN-Scale ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1 def match(query , config) {
2 return config.ServiceTier == query.Customer.ServiceTier
3 }
4 def response(query , config) {
5 ipv4s = []
6 for prefix in config.IPv4Prefixes {
7 ipv4s.push(prefix.select(hash(query.Name)))
8 }
9 ipv6s = []
10 for prefix in config.IPv6Prefixes {
11 ipv6s.push(prefix.select(hash(query.Name)))
12 }
13 return (ipv4s , ipv6s , config.TTL)
14 }

(a) Service tier isolation policy.

1 def match(query , config) {
2 r = randGen(query.Time)
3 return config.Datacenters.includes(query.Datacenter)
4 && r.sample(0, 1) <= config.Percentage
5 }
6 def response(query , config) {
7 return (config.IPv4s , config.IPv6s , config.TTL)
8 }

(b) Feature experimentation policy.

1 def match(query , config) {
2 return config.Datacenters.includes(query.Datacenter)
3 }
4 def response(query , config) {
5 ipv4s = config.DCAddresses[query.Datacenter].IPv4s
6 ipv6s = config.DCAddresses[query.Datacenter].IPv6s
7 return (ipv4s , ipv6s , config.TTL)
8 }

(c) Observability policy.

Figure 4: Examples of Topaz policies in use at a global CDN.

requires an entire redeployment of Topaz-edge—which can take
hours or more. Furthermore, similar response functions shared by
two policies must be implemented twice, which creates consistency
and maintenance challenges. Policy configuration changes, on the
other hand, can be deployed in minutes (via QS).

We pursued this initial design so developers could write policies
in a familiar language (Go), while ensuring operators could rapidly
modify (certain) policy behavior. In the next section, we describe
Topaz policies using this initial system design. However, as Topaz
evolved, we closed the gap between code and configuration. We
pushed all policy behavior, including match and response func-
tions, into the configuration file. To do this, we developed a custom
domain-specific language, which we describe in §5.

4 TOPAZ POLICIES
In this section we examine Topaz policies in detail using three

examples. We show these policies’ match and response functions
in Figure 4 and corresponding configurations in Figure 5. Each
example features unique matching criteria and a unique address
selection mechanism. Each example closely resembles at least one
of the seven policies deployed at the global, anycast CDN. Opera-
tional sensitivities preclude exact reproductions of policies in use.
Collectively, however, they accurately reflect policies that decide
addresses for millions of domains on six continents.

1 service -tier -1:
2 ServiceTier: 1
3 IPv4Prefixes:
4 - "192.0.2.0/24"
5 - "198.51.100.0/24"
6 IPv6Prefixes:
7 - "2001: db8:a1:/48"
8 - "2001: db8:a2::/48"
9 TTL: 300
10 experiment:
11 Datacenters: ["DC -5"]
12 Percentage: 0.10
13 IPv4s: ["203.0.113.1", "203.0.113.2"]
14 IPv6s: ["2001: db8:ab:1::", "2001: db8:ab:2::"]
15 TTL: 300
16 observability:
17 Datacenters: [] # Calculated at augmentation
18 IPv4Prefixes: ["100.64.0.0/16", "100.65.0.0/16"]
19 IPv6Prefixes:
20 - "2001: db8:a3::/48"
21 - "2001: db8:a4::/48"
22 DCAddresses: {} # Calculated at augmentation
23 TTL: 300

Figure 5: Configuration for the policies shown in Figure 4

4.1 Policy: Service Differentiation
Large networks like CDNs must ensure that customers with certain
service-level agreements (SLAs) receive the quality-of-service they
pay for. To do this, CDNs may reserve different physical resources
(e.g., servers or datacenters) for different SLAs, and then assign these
resources distinct IP prefixes [19]. They can then map customer
traffic to the appropriate resources via the IP addresses provisioned
accordingly—for example, to prioritize higher SLAs over lower ones.
This use case motivates our first policy.

Concretely, we consider the following objective: All traffic for a
particular service tier should receive IP addresses from that tier’s
specified prefixes. We show this policy’s match and response func-
tions in Figure 4a. The match function checks whether the queried
customer’s service tier matches the policy’s specified ServiceTier
in the policy’s configuration shown in Figure 5 (service-tier-1).
If the service tiers match, the response function deterministically
calculates IP addresses from the configured prefixes by appending
a hash of the queried name to each prefix; the hash length is equal
to the host portion length (e.g., 8 bits when using a /24 prefix).

Introducing new service tiers.Consider the introduction of a new
service tier with its own IP prefixes. The new policy is identical in
structure, so authors can duplicate the existing policy configuration
and code. In the copy, authors change the policy name to indicate
the new service tier, change the ServiceTier value, and change
the IP prefixes.

Changing addresses. Operators may need to change prefixes
to route traffic for this service-tier to different datacenters or
to re-partition the CDN’s address space. Using Topaz, these
migrations are simple—operators simply change IPv4Prefixes
and IPv6Prefixes in the policy configuration (Figure 5). Because
the configuration is decoupled from code, changes to prefixes are
fully deployed to edge servers within minutes.

4.2 Policy: Feature Experimentation
CDNs often want to safely and incrementally deploy experimental
features. Our second policy, shown in Figure 4b, allows the CDN
to gradually and reversibly siphon a percentage of eligible traffic

895

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Larisch et al.

to resources (via IPs) where experimental features are deployed.
The match function probabilistically returns true in select datacen-
ters, and the response function returns the IPs of resources where
the experiment is being conducted. Both the probability and data-
centers are expressed as parameters in the policy’s configuration
(experiment) in Figure 5, as are the IP addresses returned in by the
response function.

Rapid response to bugs. Consider an outage or critical bug that
forces operators to disable the experiment. Using Topaz, operators
can disable the experiment by changing config.Percentage to 0,
so the policy’s match function never returns true. Operators can
gradually increase that percentage when reactivating the experi-
ment.

Per-query match criteria. This policy decides to return true on a
per-query basis. Instead, the policy could decide whether to execute
on a per-domain basis by using a hash of the queried domain name
(modulo 101) instead of r.sample(0, 1). Intuitively, per-domain
experimentation is easier to reason about and facilitates debugging.

4.3 Policy: Internet Observability
CDNs monitor Internet topology to better understand and react to
changes in routing conditions. One situation of interest is when
the path from an ISP’s resolver to the CDN and the path from
a subscriber of that ISP to the CDN terminate in different CDN
locations (recall that both CDN datacenters anycast all of the same
addresses) [18].

Our final policy, shown in Figure 4c, detects this situation. The
match function returns true if the query was received in one of
the configured ‘observability’ datacenters. The policy’s response
function returns a unique IP address per datacenter—critically, this
address is still anycasted from all datacenter locations, but only re-
turned by Topaz from these datacenters. Thus, if the CDN observes
application-layer traffic at a non-observability datacenter on that
IP, the routing anomaly has occurred.

Vantage point changes. This policy illustrates how Topaz can
facilitate passive measurement. The configuration
(observability) in Figure 5 marks all datacenters (via augmenta-
tion, §3.3) as ‘observability’ datacenters, but could instead manually
list a select set of vantage points.

5 A TOPAZ-SPECIFIC DSL
Configuration changes in Topaz are powerful. Many policy changes
can be achieved via configuration changes only. But other changes—
those that modify match and response functions—cannot be de-
ployed rapidly because these functions are statically bundled with
Topaz-edge. Operators must commit such changes to the Topaz-
edge repository and deploy them to the global edge using standard
release channels, which can take from hours to a day.

To close the gap between code and configuration, we developed
a new domain-specific language for expressing both policy config-
uration and policy code called topaz-lang, which we describe in
the remainder of this section. All seven policies deployed at the
CDN are currently deployed using topaz-lang.

1 - name: service -tier -1
2 exclusive: false
3 config: |
4 (config
5 [ServiceTier 1]
6 [IPv4Prefixes
7 (list (ipv4_prefix "192.0.2.0/24")
8 (ipv4_prefix "198.51.100.0/24"))]
9 [IPv6Prefixes
10 (list (ipv6_prefix "2001: db8:a1 :/48")
11 (ipv6_prefix "2001: db8:a2 ::/48"))]
12 [TTL (ttl 300)])
13 match: |
14 (match
15 (= (get "ServiceTier" query) ServiceTier))
16 response: |
17 (response
18 (let ([hashed (hash (get "Name" query))]
19 [ipv4s (select IPv4Prefixes hashed)]
20 [ipv6s (select IPv6Prefixes hashed)])
21 (list ipv4s ipv6s TTL)))
22 - name: experiment
23 exclusive: true
24 config: |
25 (config
26 [Datacenters (list (datacenter "DC -5"))]
27 [Percentage (percentage 10)]
28 [IPv4s (list (ipv4_address "203.0.113.1")
29 (ipv4_address "203.0.113.2"))]
30 [IPv6s (list (ipv6_address "2001: db8:ab :1::")
31 (ipv6_address "2001: db8:ab :2::"))]
32 [TTL (ttl 300)])
33 match: |
34 (match
35 (let ([r (rand_gen (hash (get "Name" query)))]
36 [sampled (sample r (range 0 1))])
37 (and (in? (get "Datacenter" query) Datacenters)
38 (<= sampled Percentage))))
39 response: |
40 (response (list IPv4s IPv6s TTL))
41 - name: observability
42 exclusive: true
43 config: |
44 (config
45 [Datacenters (get_datacenters "observability ")]
46 [IPv4Prefixes
47 (list (ipv4_prefix "100.64.0.0/16")
48 (ipv4_prefix "100.65.0.0/16"))]
49 [IPv6Prefixes
50 (list (ipv6_prefix "2001: db8:a3 ::/48")
51 (ipv6_prefix "2001: db8:a4 ::/48"))]
52 [DCAddresses (distribute Datacenters
53 IPv4Prefixes
54 IPv6Prefixes)]
55 [TTL (ttl 300)])
56 match: |
57 (match (in? (get "Datacenter" query) Datacenters))
58 response: |
59 (response
60 (let ([datacenter (get "Datacenter" query)]
61 [ips (get datacenter Datacenters)]
62 [ipv4s (get "IPv4s" ips)]
63 [ipv6s (get "IPv6s" ips)])
64 (list ipv4s ipv6s TTL)))

Figure 6: Policy configuration with topaz-lang.

We developed a new DSL, rather than use existing policy
languages, for two primary reasons. First, we wanted our lan-
guage to prevent certain classes of bugs and mis-configuration.
topaz-lang’s non-primitive types were built specifically for
DNS (e.g., ipv4_prefix, ttl, datacenter) and many types make
it impossible for operators to express categorically incorrect
values (e.g., invalid IP prefixes, datacenters that do not exist).
Second, we wanted our language to be powerful enough to express
complex policies while keeping it limited enough to enable formal
verification.

896

Topaz: Declarative and Verifiable Authoritative DNS at CDN-Scale ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

5.1 Deploying topaz-lang Policies
topaz-lang subsumes all policy configuration and functions. Fig-
ure 6 shows both the configuration from Figure 5 and policy func-
tions from Figure 4 expressed in one file. To add a new policy,
operators add a new YAML block of the following form to the file:

- name: <name >

exclusive: <true/false >

config: (config <bindings)

match: (match <e1 >)

response: (response <e2 >)

where <name> is the name of the policy, <exclusive> is the
flag for exclusivity property (explained in §6), <bindings> is a
variable number of configuration bindings from name to expression,
<e1> is an expression that evaluate to true or false, and <e2>
is an expression evaluating to the response function’s 3-tuple (a
topaz-lang list). Match and response functions take an implicit
argument query, which is a topaz-lang map of key-value pairs.

Operators edit only the file shown in Figure 6 to modify, remove,
or add a policy. Topaz-core pushes this file via QS to Topaz-edge,
which stores each policy’s parsed match and response functions
(and configuration). Upon receiving a query, Topaz-edge executes
policy match and response functions as before, except now it uses
its built-in topaz-lang interpreter to do so. Using topaz-lang, all
policy changes take minutes to deploy to the CDN’s global edge
network. Our prototype topaz-lang interpreter comprises ∼5K
lines of Go code.

5.2 topaz-lang Syntax
In service of simplicity, we made topaz-lang a non-Turing-
complete S-expression language with a small set of built-in
types. It is dynamically typed, and each expression evaluates to
exactly one value. The primitive types are Booleans, numbers, and
strings. There are constructors for pairs, lists, maps (associative
arrays), ranges, and sets. topaz-lang’s other types were designed
specifically for writing Topaz policies and include IPv4 prefixes
and addresses, IPv6 prefixes and addresses, TTLs, datacenter IDs,
random number generators, and percentages.

We summarize topaz-lang syntax in Figure 7. Built-in functions
(indicated by 𝑓) include Boolean negation, numerical comparisons,
functions to construct composite data structures, and functions to
read from these data structures (e.g., get). Both control flow and
the set of available functions are intentionally limited. There are
if statements but no loops or recursion. All functions are built-in;
users cannot define their own functions. All functions evaluate to
exactly one value, but can throw an error if given invalid input. For
instance,

(get "B" (map (pair "A" true)))

throws an error because the key "B" is not present in the given
map.2

5.3 Augmentation and Validation
topaz-lang’s type system and built-in functions also replace
configuration augmentation functions. Consider the observability

2Errors in match or response functions halt policy execution, moving to the next policy in order.

𝑒 F 𝑙 | 𝑥 | (and 𝑒1 . . .) | (or 𝑒1 . . .) |
(𝑓 𝑒1 𝑒2 . . .) | (if 𝑒1 𝑒2 𝑒3) | (let ([𝑥1 𝑒1] [𝑥2 𝑒2] . . .) 𝑒𝑛)

𝑙 F true | false | number | string
𝑥 F query | configuration identifier

Figure 7: topaz-lang syntax description.

policy’s topaz-lang configuration—Datacenters is a value
computed from calling the built-in get_datacenters function
that pulls the list of available experimental datacenters from an
internal API. Then, the built-in function distribute assigns
addresses from IPv4Prefixes and IPv6Prefixes to Datacenters.
Topaz-core evaluates the expressions in config before writing the
“final” computed configuration to QS (Topaz-core also includes the
topaz-lang interpreter).

While not currently deployed, in the future policies will be able
to define extra validation functions in topaz-lang using an addi-
tional validate: (validate <e3>) key-value pair in its YAML
block, where <e3> is an expression evaluating to true or false.
This allows policy authors to define optional additional checks to
perform for ensuring that policies are configured correctly.

6 topaz-lang POLICY VERIFICATION
Our latest version of Topaz formally verifies topaz-lang policies
to automatically detect policy match function conflicts, and other
properties. Topaz’s formal verifier checks the correctness of individ-
ual policies and of inter-policy interactions against a formal model
of topaz-lang. Policies are checked following augmentation using
the final configurations.

Our verification system uses theories of first-order logic to define
a formal model of topaz-lang’s semantic behavior. This model
makes it possible to articulate and check properties as logical for-
mulas. For instance, we can express the specification “there exists
a query 𝑞 that matches policy A” as ∃𝑞 [m𝐴 (𝑞)]. This formula can
be checked by a Satisfiability Modulo Theories (SMT) solver: the
solver will search for a query 𝑞 that satisfies the match function
m𝐴 of policy A.3

6.1 Policy Verification by Example
Before describing Topaz’s logical model, we illustrate the value of
policy verification by showcasing three properties we currently
verify: satisfiability, reachability, and exclusivity. For exposition, we
consider the policies service-tier-one (ST1), experiment (EXP),
and observability (OBS) from Figure 6. We assume that OBS
augments the Datacenters field to the list ["DC-1", "DC-3",
"DC-5"].

Property 1: Satisfiability. A policy is satisfiable if its match func-
tion has some query for which it returns true. Unsatisfiable policies
can never execute and are essentially “dead code”. Policies may
be unsatisfiable because of a bug in the policy code, or become
unsatisfiable due to a regression, e.g., the match function returns
true only for a retired datacenter.

To check satisfiability, the verifier searches for a DNS query 𝑞
that satisfies the encoded match function formula. DNS queries are
3This model of the match function elides the config parameters, which we treat as inlined data.

897

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Larisch et al.

modeled as a finite map from fields to symbolic variables. For the
sake of this example, we consider queries with the following three
fields: Name, ServiceTier and Datacenter (our complete model
supports other fields). Our verifier is aware of all possible values
these variables can take (e.g., it knows all possible datacenters
currently in use by the CDN). To encode the match function, the
verifier uses an equivalent symbolic version of the topaz-lang
interpreter to construct a Boolean formula over 𝑞.

For example, to check if the observability policy is satisfiable,
the solver checks ∃𝑞 [mOBS (𝑞)], where mOBS (𝑞) returns true if
𝑞’s Datacenter equals DC-1, DC-3 or DC-5. The solver finds the
following query:

(map (pair "Name" "www.example.com")

(pair "ServiceTier" 1)

(pair "Datacenter" "DC -1"))

The Topaz verifier always checks satisfiability for each policy when
executed: if a policy is satisfiable, the verifier reports a matching
query to the user; otherwise, if nomatching query exists, the verifier
returns a warning that the policy is “dead”.

Property 2: Reachability. Reachability is similar to satisfiability
but stronger: a policy is reachable if there is some query that will
match it given all other higher-ranked policies.While satisfiability
ensures that each policy will execute in isolation, reachability en-
sures that no policy prevents subsequent policies in the policy list
from executing.

To illustrate this property, we check reachability of the first two
policies in Figure 6. Checkingwhether ST1 is reachable is equivalent
to checking whether it is satisfiable because there are no preceding
policies. However, for the next policy, EXP, we ask the solver to
satisfy the formula ∃𝑞 [¬mST1 (𝑞) ∧mEXP (𝑞)]. The solver finds the
following query:

(map (pair "Name" "www.example.com")

(pair "Datacenter" "DC -5")

(pair "ServiceTier" 2))

which fails to match ST1 since its ServiceTier field is not 1, but
matches EXP because it is destined for DC-5. The EXP’s match func-
tion uses the sample built-in function to probabilistically choose
to match routes, so, in practice, this query may or may not trigger
the match. Reachability is a discrete property (either the policy has
queries that match or doesn’t), that the verifier checks by over-
approximating comparisons against randomly-sampled variables
as simply returning a Boolean decision (the sample was below the
threshold).

Like satisfiability, checking reachability can warn operators
when a new policy or different policy order makes a policy un-
reachable and “dead code”. For instance, imagine that an operator
ranked OBS below EXP. The verifier would prove that EXP is now
unreachable by constructing a formula ∃𝑞 [¬mST1 (𝑞)∧¬mOBS (𝑞)∧
mEXP (𝑞)]. It encodes ¬mOBS (𝑞) as a conjunction of constraints
with a clause (get "Datacenter" 𝑞) ≠ "DC-5". As mEXP (𝑞) in
turn has a constraint (get "Datacenter" 𝑞) = "DC-5", the entire
conjunction reduces to false, making the formula unsatisfiable.

Property 3: Exclusivity. By checking reachability, operators can
confirm that their policy ordering avoids the undesirable scenario
where higher-ranked policies block all queries for a lower-ranked

Property Logical formula

A is satisfiable ∃𝑞 [m𝐴 (𝑞)]
B is reachable after A ∃𝑞 [¬m𝐴 (𝑞) ∧m𝐵 (𝑞)]
A and B are exclusive ∀𝑞 [¬m𝐴 (𝑞) ∨ ¬m𝐵 (𝑞)]
B matches all queries to A ∀𝑞 [m𝐴 (𝑞) → m𝐵 (𝑞)]
A and B are match-equivalent ∀𝑞 [m𝐴 (𝑞) ↔ m𝐵 (𝑞)]

Table 1: Built-in Topaz-verifier properties

policy. That being said, if two policies match an overlapping set of
queries𝑄 , operators must choose which policy goes before the other
(and handles 𝑄). Operators may in some situations have multiple
“high-priority” policies that they intend to use as the sole policies
for all queries of a particular type. Reachability can confirm that
these high-priority policies all have queries they match, but not that
this set of queries is distinct from the set matched by another policy.
To ensure that all high-priority policies have “sole control” over
their matching queries, we must prove that these policies match no
queries in common with one another, i.e., they are exclusive. The
relative ordering of a group of exclusive policies is thus irrelevant.

To check exclusivity of two policies, the verifier checks that
no query exists that matches both policies’ match functions. For
instance, consider the EXP and OBS policies. The solver checks
whether ∃𝑞 [mEXP (𝑞) ∧mOBS (𝑞)]. In this case, the solver finds the
following counterexample, showing that these two policies are not
exclusive:

(map (pair "Name" "www.example.com")

(pair "Datacenter" "DC -5")

(pair "ServiceTier" 1))

If operators updated OBS’s augmentation to now exclude DC-5,
EXP and OBS will no longer have datacenters in common. Thus,
∃𝑞 [mOBS (𝑞) ∧mEXP (𝑞)] will be false, so the verifier reports that
these two policies are now exclusive.

To instruct the verifier to check exclusivity of a policy, operators
set its exclusive flag to true. The verifier then performs pairwise
checks between all exclusive policies. In practice, the first three (of
our seven) production policies are marked exclusive, to check
that they never conflict.

6.2 A Formal Model of Topaz Policies
We now describe the formal model of Topaz policies. Our initial
set of verified properties is summarized in Table 1. Properties are
expressed as logical formulas over one or more policies’ match
functions.

In the model, each Topaz policy’s match function is a predi-
cate over queries: For a policy A, m𝐴 (𝑞) returns true if A matches
query 𝑞, and false otherwise. Queries are associative arrays of key-
value pairs, where keys identify the represented query field, e.g.,
the query’s datacenter or service tier. The set of allowed strings
for each string field is known a priori; for example, to identify
three-character strings used by the CDN to represent particular
datacenters, we assign each unique string a unique bitvector. Prim-
itive types, such as Booleans, integers and strings, are encoded
directly in logic or represented as bitvectors. Fixed width integers
such as uint32 are encoded as bitvectors with the width of the

898

Topaz: Declarative and Verifiable Authoritative DNS at CDN-Scale ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

corresponding type in our Go implementation. Lists and sets of
values are encoded as fixed-length lists, and maps as fixed-length
lists of pairs. We inline all (augmented) configuration values into
match functions prior to encoding.

The semantics of most expressions in the DSL follow the usual
encoding, taking the topaz-lang Go interpreter as the source of
truth. So far, all match and response functions, as well as built-in
functions, have been compatible with our formal model. However,
in practice, we did need to make two approximations to ensure
that verification was decidable. First, consider that queries have
a variable-length list of flags or labels that are attached by the
DNS nameserver. To make verification decidable over this list, we
assume a safe upper bound 𝑘 on the length of this list (large enough
to include all flags we may realistically see in practice). Also, as
alreadymentioned, we over-approximate the semantics of randomly
sampling queries, as well as from an enumerable 𝐿. 4 We use a fresh
symbolic variable 𝑙 constrained to be one of the elements in 𝐿 to
consider every possible choice of element in the enumerable. Doing
so precludes reasoning over probabilities, which is appropriate
because the primary interest is in discrete properties of match
functions (e.g., if a query exists that will match).

6.3 Topaz-verifier Implementation
Topaz-verifier is implemented in 1,800 lines of the solver-aided DSL
Rosette [47], a dialect of Racket [38]. The verifier’s topaz-lang
interpreter is distinct from the topaz-lang interpreter written in
Go—we discuss the tradeoffs in §8.1.

The implementation consists of
(1) a tree-walk interpreter to encode match functions as formu-

las (see §6.2);
(2) a library of properties to be checked (Table 1); and
(3) a frontend to submit configurations for checking the proper-

ties.
The property functions use Rosette’s solve and verify features

to ask its underlying SMT solver (Z3 [16] or CVC4 [6]) if the prop-
erty holds over a symbolic query. The library can be easily extended
to support more properties.

7 PERFORMANCE EVALUATION
Topaz is currently deployed in production at a global anycast CDN.
It has improved the transparency and agility of DNS objectives, but
has performance implications. We now evaluate Topaz’s perfor-
mance. On balance, the CDN finds Topaz’s overheads acceptable
given its benefits.

7.1 Topaz-edge Overheads
We quantify the latency that Topaz-edge (and policies) add to CDN
DNS queries using production latency measurements and local
microbenchmarks.

Proportion of production DNS latency.We begin by calculating
the proportion of time each DNS query spends contacting Topaz-
edge. We instrument all nameservers in the CDN to record the total
time to resolve incoming DNS queries, and also the time between
forwarding queries to Topaz-edge and receiving a response. The

4Enumerables may be ranges of integers, lists, sets or maps.

Percentile
Topaz-edge Overhead

(includes IPC)
Topaz-edge Overhead

(excluding IPC)

99 0.07% 0.02%
95 0.36% 0.16%
75 1.92% 0.52%
50 4.73% 0.71%
25 9.68% 1.13%

Table 2: Proportion of the full authoritative query-response time
spent on Topaz-edge, including and excluding IPC.

portion of time spent on Topaz-edge both including and excluding
inter-process communication (IPC) is shown in Table 2, and leads to
two observations. First, Topaz-edge is understandably less suscep-
tible to load-induced variability than the much larger authoritative
DNS process. Second, IPC increases Topaz-edge overhead by a fac-
tor of ∼2-9. While Topaz may be merged into the nameserver in the
future to eliminate IPC, the CDN deems the current performance
overheads acceptable.

Microbenchmarking topaz-lang policies.We also measure per-
formance of Topaz-edge in both Go (used for earlier versions of
Topaz; see §4) and topaz-lang (§5) as we increase the number
of deployed policies. We produce these results on a development
machine because we cannot artificially inflate the number of poli-
cies in production. Instead we resort to local We deploy Topaz in
a Docker container that emulates the edge DNS environment, on
an M1 (arm64) with 10 cores and 32GB of memory. We construct
a workload consisting of 10 clients that each send 1000 queries
(10K total) to Topaz over a single gRPC connection. We repeat the
process for N= [1, 10, 20...100] policies, where the first N−1 policies
are a modified version of the slowest deployed policy at the CDN;
only the N𝑡ℎ policy matches the query.

We show the results (ms) in Table 3. Each cell includes one
normal typeface measurement in which all policies were expressed
in Go, and one boldface measurement below in which all policies
were expressed in topaz-lang. As expected, performance variation
between 25𝑡ℎ and 99𝑡ℎ percentiles increase with the number of
policies evaluated. However, reading from left to right suggests
that Topaz-edge scales well, with a small penalty for executing in
topaz-lang.

7.2 Topaz Verifier Performance
Our policy verifier runs as part of the CI pipeline and executes
whenever operators modify the policy file. The verifier checks
that every policy is satisfiable and reachable; only policies marked
exclusive are checked for exclusivity. The end-to-end time to build,
validate, and verify (including the verifier’s Docker build time) on
the seven active policies is about 45 seconds. Verification takes 5–6
seconds, a small fraction of the total.

We also measure worst-case verification performance as the
number of policies increases. We generated an artificial policy file
with N= [1, 10, 20, .., 100] policies; the first 𝑁

2 policies are marked
exclusive. Results are shown in Figure 8 by each verified prop-
erty. The fastest property to verify is satisfiability since the verifier
can determine if there exists a matching query for each policy in-
dependent of the others. Reachability must evaluate all policies

899

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Larisch et al.

Percentile 1 10 20 30 40 50 60 70 80 90 100

99 13.19
14.3

14.83
16.68

16.95
18.56

17.42
18.77

17.1
20.33

19.67
23.38

19.13
21.85

23.38
23.82

21.5
21.67

20.1
25.03

20.92
26.13

95 5.96
5.83

6.58
7.29

7.83
8.12

8.71
9.41

8.48
11.34

9.6
12.78

10.15
11.83

10.42
13.22

11.64
14.31

11.77
14.82

12.82
15.04

75 1.64
1.58

1.89
1.97

2.18
2.34

2.64
2.87

2.38
3.58

2.96
3.96

3.26
4.11

3.41
4.68

3.68
5.57

3.8
5.68

4.22
5.81

50 0.99
0.95

1.06
1.08

1.12
1.23

1.23
1.38

1.15
1.66

1.31
1.78

1.42
1.91

1.55
2.11

1.6
2.58

1.63
2.56

1.91
2.81

25 0.66
0.64

0.69
0.71

0.72
0.8

0.76
0.87

0.72
0.99

0.79
1.02

0.82
1.09

0.9
1.15

0.91
1.35

0.89
1.36

0.99
1.49

Table 3: Topaz-edge microbenchmarks (in ms) with 1 to 100 policies. Values in normal typeface are measurements for policies expressed in
Go. Values in boldface are measurements when all policies are expressed in topaz-lang.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

10 20 30 40 50

C
P

U
 t
im

e
 (

s)

Number of Policies

Satisfiability
Reachability

Exclusivity

Figure 8: Verifier runtime as number of policies increase, according
to property verified. Policies are modified from the slowest produc-
tion policy, and only the last policy in the list matches. The first 𝑁

2
policies are marked exclusive.

up to and including the policy being checked. Exclusivity incurs
greater penalties as exclusive policies increase in number, since
comparisons are pairwise with every exclusive policy. In Figure 8
the N=40 policies file has 20 policies marked exclusive, which takes
∼100s to verify—a fraction of time needed by a human to manually
review and test, and who may make mistakes. Policy changes are
also infrequent so, on balance, relatively longer verification times
are deemed acceptable.

Certain changes may not require re-verification of all policies.
For instance, certain exclusivity and reachability results can be
cached. We have yet to explore these optimizations because there
is currently no need.

8 EXPERIENCEWITH TOPAZ
In this section we consider the qualitative impact of Topaz at the
CDN, including the lessons we learned designing and implementing
Topaz, as well as things we might have done differently. We also
examine specific instances in which Topaz had a major impact on
operations at the CDN.

8.1 Topaz in Production
At time of writing, Topaz-edge processes (globally) ∼1M queries
per second (qps), from which ∼100K qps trigger a policy match
function. Topaz has replaced multiple functions of the CDN’s legacy
assignment system, and efforts are currently underway to replace
more. There are seven policies active and deployed. Three policies
are for service isolation (§4.1), two are for experimentation (§4.2),
and two for observability (§4.3). An eighth policy was retired after
completing a measurement study [20], while an additional three
policies are in development. We estimate that Topaz will house
about 20 policies in the medium-term.

As of late 2023, all active policies are expressed in topaz-lang,
together comprising 265 lines of policy configuration (i.e., match,
response, and parameters). Each policy’s match function is on aver-
age ten lines of topaz-lang code, while response functions are six
lines on average.

Since all policies are written in topaz-lang, every change to
any policy is checked by the formal verifier, which executes in a
CI pipeline. From the active policies, the first three are marked
and checked for exclusivity: the verifier confirms that there exists
no query that would trigger more than one of these policies—this
makes the order of these policies irrelevant. The remaining four
policies are non-exclusive, so their order is semantically important.
After months in the CI pipeline the verifier has yet to report policy
conflicts or violations. Its integration has increased confidence of
engineers in the reliability of policies that are active and deployed.

8.2 Lessons Learned: Strengths & Weaknesses
We continue to learn various strengths and weaknesses of Topaz’s
design and deployment. We highlight both to aid future practi-
tioners’ systems with similar goals, and identify opportunities for
further research.

Strength: match/action paradigm. The decision to split policies
into a separate match function, a response function, and separate
configuration block, has yielded significant dividends. This finding
reinforces the paradigm’s generality from prior network policy
languages [3, 10, 13, 24, 43]. First, it makes policies easier to skim
(just looking at match functions) to determine which policy will
run given a query. Second, since the verifier only verifies match

900

Topaz: Declarative and Verifiable Authoritative DNS at CDN-Scale ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

functions, it only needs to be changed when a new Topaz built-
in function is used in a match function. Almost all new built-in
functions added to topaz-langwere only needed for configuration
or response functions: thanks to the separation of policies into these
three components, the verifier did not require any changes in these
cases.

Weakness: separate model-checker. Topaz’s verifier was devel-
oped as a separate tool from Topaz-edge and Topaz-core, with its
own topaz-lang interpreter and verifier written in Rosette/Racket.
To ensure semantic equivalence, engineers have to maintain the
verifier alongside Topaz-edge and Topaz-core. Inconsistencies in
the two implementations may cause the verifier to fail or provide
incorrect results if it falls out-of-sync with the Go implementa-
tion. So far, this has not been a significant issue because 1) the
topaz-lang language itself has not changed and is not expected to
change, and 2) the suite of built-in functions used inmatch functions
rarely changes, as aforementioned. In the future, we may perform
differential testing of the two implementations like in Cedar [14].
Topaz makes a case for formal methods in production, but effective
integration and maintenance remain a hard problem.

Strength: centralized configuration, distributed execution.
Much like Software-Defined Networking systems [10], we have
found that developing, maintaining, and compiling (augmenting)
configuration in a central location and then distributing that config-
uration to servers to be a good design pattern. The control plane is
simple—distribute the policy configuration file to all edge servers—
but the configuration values can be constructed (via augmentation)
using arbitrary data sources and computation. Furthermore, run-
ning the same policy file in every datacenter (as opposed to differ-
ent policies in different datacenters) simplifies operations greatly,
considering the CDN maintains a single software stack across all
machines. Distributing the configuration over a fast control plane
fabric (Quicksilver) also makes it easy to roll the configuration
forward or backward.

Weakness: Scheme-like syntax.We chose an S-expression-based
syntax because it is easy to parse and evaluate. We decided early on
that this might have been the wrong choice—for those engineers
that lack familiarity with Scheme/Lisp languages, the prospect
of editing the policy file is that much more daunting. While an
informal poll of the engineers who maintain and operate Topaz
said they found it strange at first but ultimately the right tool for
the job, we still believe a more approachable syntax would make
Topaz more palatable to non-experts.

8.3 Case Studies
We use two case studies to illustrate how Topaz has increased the
agility of authoritative DNS at the CDN.

Encrypted Client Hello (ECH). Using Topaz, CDN operators
safely and globally tested an emerging TLS extension in draft at the
IETF that encrypts the TLS ClientHello [40]. Servers announce ECH
support to clients via the DNS, using an ECHConfig structure in the
HTTPS resource record for the supported name. ECH establishes
an anonymity set defined by all the names that share the same
key information in their respective resource records. In Topaz, this
makes ECHConfig management equivalent to address selection;

only minor additions to Topaz enabled support for ECH policies
that returned common ECHConfig structures. The changes were
ready by the time ECH had been implemented in the CDN servers.

Developers used Topaz over a three-month period to announce
ECH support for an incrementally increasing number of names and
datacenters. In late stages, and close to general release, a latent bug
in an unrelated system caused ECH to fail in a small number of
cases. Operators resolved the failure by reducing the application of
the ECH policy to zero percent, which took effect at edge servers
in seconds.

Mitigating upstream failure by re-addressing. Topaz can help
operators mitigate upstream failures. In one example, a misconfigu-
ration in a neighboring network caused a large routing failure in a
small number of datacenters, affecting a small number of the CDN’s
anycasted prefixes. Since the upstream network is connected to the
CDN at multiple IXPs, one obvious mitigation would have been to
withdraw those prefixes via BGP from only the affected datacen-
ters, leaving the prefixes reachable at other datacenters. However, it
was unclear how these withdrawals would affect systems upstream
of the failure, or if the upstream failure might also affect other
datacenters.

Instead, operators recognized that the affected prefixes were
employed by a single Topaz policy, and that the failure could be
mitigated by changing that policy’s prefixes to unaffected ones.
Operators made this sweeping set of address changes with a one-
line configuration edit.

9 RELATEDWORK

CDN-scale network management. Taiji [12], Facebook’s system
for managing global user traffic, uses a constraint optimization
solver to map portions of traffic from edge nodes to datacenters.
Taiji maps fractions of traffic each edge node will forward to data
centers based on service-level objectives specified in policies. Face-
book has another system, Edge Fabric [41], designed for optimized
routing of egress traffic from a given datacenter.

AT&T uses CORNET [34] to manage change across hetero-
geneous network infrastructure by decomposing changes into
reusable, composable “building blocks”. Similarly, Facebook
uses Robotron [46] to manage a large production network in
top-down fashion. Developers express high-level intent using an
object-relational mapping (ORM), which the system compiles to
proprietary configuration formats.

Microsoft’s Footprint [29] showed that making routing decisions
based on information about datacenters, edge nodes, and wide-area
networks can minimize congestion, among other factors. Google
uses Espresso [50] to achieve the benefits of Software-Defined Net-
working (SDN) to their peering edge network, which runs arbitrary
hardware and software.

Network programming & verification. Prior work on verifiable
network programming languages [4, 7, 21, 22, 25, 26, 32, 39] has
focused primarily on forwarding (the data plane) and routing (the
control plane). These languages have different goals from Topaz:
they analyze the network’s packet forwarding behavior (data plane)
or routing protocols (control plane). For example, NetKAT [4] de-
fines a language for checking end-to-end properties of switch-level

901

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Larisch et al.

forwarding behavior. Our decomposition of policies into match
and response functions resembles the match-action rules used in
forwarding and access control [26], as well as conditions and ac-
tions in IETF’s Intent Based Networking [13] RFC. We believe these
similarities confirm the legitimacy of our proposal. Our verification
procedure follows a standard approach [32, 48] of embedding a DSL
in a solver-aided or logic programming language (Rosette [47] in
our case) to encode DSL programs in formal logic.

Formal Models of DNS. Researchers have also sought to formally
verify properties of DNS resolution using traditional static DNS
nameservers [27, 28, 30]. These properties may include rewrite
loops, inconsistent answers or query latency. GRoot [27] and Liu
and Duan et al. [30] present formal models of DNS that can find
violations of these properties. These techniques can also be used for
testing that DNS implementations comply to formal models—the
tool SCALE [28] does so using the formal model of GRoot. These
approaches target an orthogonal problem to Topaz: finding bugs
in the responses of DNS infrastructure. Extending Topaz-verifier’s
model to check properties of DNS responses would potentially
allow it to also check properties like these ones: otherwise, one
could use tools like GRoot or Liu and Duan et al.’s to check that
the resulting DNS behavior while using Topaz respects desirable
resolution properties.

DNS scripting. Some authoritative DNS nameservers support
executing scripts in response to certain queries. In LuaDNS [1]
users can write zone files in standard Bind format or as Lua scripts
checked into git, though there is no decomposition of scripts into
distinct and verifiable policies. PowerDNS [2] is a scriptable DNS
resolver (not nameserver) that also has Lua scripting. Most sim-
ilar to Topaz is Bunny DNS [36], to which end-users can upload
code that their nameserver executes in response to certain queries.
While Topaz also executes code in response to queries, we focus
on effectively and safely combining disparate policies written by
different stakeholders.

10 CONCLUSION
Topaz was built because it no longer makes sense for modern CDNs,
even anycast CDNs, to think about static assignments from query to
IP. The anycast CDN in question manages millions of addresses and
many more domain names. At that scale, it is more advantageous
to group queries that share context and circumstances, rather than
simply names. Topaz achieves this by classifying queries using live
programs, i.e., match functions. CDNs also need more dynamic
mechanisms for assigning IPs to those groups of queries—hence
Topaz’s response functions. Furthermore, the IPs themselves are
no longer consequential, since they can be trivially rotated with
configuration changes.

We are optimistic about Topaz’s impact as its adoption and de-
velopment continue. Many CDN engineers are optimistic about
guarantees provided formal verification because making changes
to DNS often causes large-scale outages [45, 51]. No doubt verifi-
cation will not prevent all problems—as one engineer pointed out,
verification tools can themselves cause bugs—but we look forward
to reporting on the challenges and successes of formal verification
at scale in future work.

11 ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd, Ramesh
K. Sitaraman, for their helpful feedback. Special thanks are due to
Kristin Berdan, David Cruz, Wesley Evans, John Graham-Cumming,
Vânia Gonçalves, Ólafur Guðmundsson, Sergi Isasi, Sami Kerola,
Eddie Kohler, Algin Martin, Alissa Starzak, Tom Strickx, Nick Sul-
livan, Wouter de Vries, David Wragg, and more, whose collective
input enabled or informed this work.

REFERENCES
[1] LuaDNS. https://www.luadns.com/.
[2] PowerDNS. https://doc.powerdns.com/recursor/index.html.
[3] Policy-based control for cloud native environments, 2021.
[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole

Schlesinger, and David Walker. NetKAT: Semantic foundations for networks. ACM SIGPLAN
Notices, 49(1):113–126, 2014.

[5] Abbie Barbir, Brad Cain, Raj Nair, and Oliver Spatscheck. Known Content Network (CN)
Request-Routing Mechanisms. Technical report, 2003.

[6] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages
171–177. Springer, 2011.

[7] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker. Don’t mind
the gap: Bridging network-wide objectives and device-level configurations. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 328–341, 2016.

[8] Thomas P. Brisco. DNS Support for Load Balancing. RFC 1794, April 1995.
[9] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra Padhye. Analyzing

the performance of an anycast cdn. In Proceedings of the 2015 Internet Measurement Conference,
pages 531–537, 2015.

[10] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott
Shenker. Ethane: Taking control of the enterprise. ACM SIGCOMM computer communication
review, 37(4):1–12, 2007.

[11] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. End-User Mapping: Next Generation
Request Routing for Content Delivery. ACM SIGCOMM Computer Communication Review,
45(4):167–181, 2015.

[12] David Chou, Tianyin Xu, Kaushik Veeraraghavan, Andrew Newell, Sonia Margulis, Lin Xiao,
Pol Mauri Ruiz, Justin Meza, Kiryong Ha, Shruti Padmanabha, et al. Taiji: Managing Global
User Traffic for Large-Scale Internet Services at the Edge. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 430–446, 2019.

[13] Alexander Clemm, Laurent Ciavaglia, Lisandro Zambenedetti Granville, and Jeff Tantsura.
Intent-Based Networking - Concepts and Definitions. RFC 9315, October 2022.

[14] Joseph W Cutler, Craig Disselkoen, Aaron Eline, Shaobo He, Kyle Headley, Michael Hicks,
Kesha Hietala, Eleftherios Ioannidis, John Kastner, Anwar Mamat, et al. Cedar: A new language
for expressive, fast, safe, and analyzable authorization. Proceedings of the ACM on Programming
Languages, 8(OOPSLA1):670–697, 2024.

[15] Gonçalo Grilo David Tuber, Luke Orden. How Cloudflare’s systems dynamically route traffic
across the globe, September 2023. https://blog.cloudflare.com/meet-traffic-manager.

[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems: 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings 14, pages 337–340. Springer, 2008.

[17] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman, and Bill Weihl.
Globally distributed content delivery. IEEE Internet Computing, 6(5):50–58, 2002.

[18] Marwan Fayed, Lorenz Bauer, Vasileios Giotsas, Sami Kerola, Marek Majkowski, Pavel Odintsov,
Jakub Sitnicki, Taejoong Chung, Dave Levin, Alan Mislove, Christopher A. Wood, and Nick
Sullivan. The Ties That Un-Bind: Decoupling IP from Web Services and Sockets for Robust
Addressing Agility at CDN-Scale. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
SIGCOMM ’21, page 433–446, New York, NY, USA, 2021. Association for Computing Machinery.

[19] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu, Yingying Chen, and Oleg
Surmachev. FastRoute: A Scalable Load-Aware Anycast Routing Architecture for Modern
CDNs. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),
pages 381–394, 2015.

[20] Withheld for anonymous review, October 2022.
[21] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer Rexford, Alec

Story, and David Walker. Frenetic: A network programming language. ACM Sigplan Notices,
46(9):279–291, 2011.

[22] Nick Giannarakis, Devon Loehr, Ryan Beckett, and DavidWalker. Nv: An intermediate language
for verification of network control planes. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 958–973, 2020.

[23] Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios Kotronis, Xenofontas
Dimitropoulos, Ethan Katz-Bassett, and Georgios Smaragdakis. Seven Years in the Life of
Hypergiants’ Off-Nets. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages
516–533, 2021.

[24] Timothy L Hinrichs, Natasha S Gude, Martin Casado, John C Mitchell, and Scott Shenker.
Practical declarative network management. In Proceedings of the 1st ACM workshop on Research
on enterprise networking, pages 1–10, 2009.

[25] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen Tammana, and David
Walker. Contra: A programmable system for performance-aware routing. In 17th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2020, 2020.

[26] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie Kaufman. Automated analysis
and debugging of network connectivity policies. Microsoft Research, pages 1–11, 2014.

902

https://www.luadns.com/
https://doc.powerdns.com/recursor/index.html
https://blog.cloudflare.com/meet-traffic-manager

Topaz: Declarative and Verifiable Authoritative DNS at CDN-Scale ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

[27] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Millstein, and George Varghese.
Groot: Proactive verification of dns configurations. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications, technologies,
architectures, and protocols for computer communication, pages 310–328, 2020.

[28] Siva Kesava Reddy Kakarla, Ryan Beckett, Todd Millstein, and George Varghese. SCALE:
Automatically Finding RFC Compliance Bugs in DNS Nameservers. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), pages 307–323, 2022.

[29] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul Mahajan, Jitendra
Padhye, and Ming Zhang. Efficiently Delivering Online Services over Integrated Infrastructure.
page 15, 2013.

[30] Si Liu, Huayi Duan, Lukas Heimes, Marco Bearzi, Jodok Vieli, David Basin, and Adrian Perrig.
A formal framework for end-to-end dns resolution. In Proceedings of the ACM SIGCOMM 2023
Conference, pages 932–949, 2023.

[31] Zhenhua Liu, Minghong Lin, AdamWierman, Steven H Low, and Lachlan LHAndrew. Greening
Geographical Load Balancing. ACM SIGMETRICS Performance Evaluation Review, 39(1):193–204,
2011.

[32] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George Varghese.
Checking beliefs in dynamic networks. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 499–512, 2015.

[33] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic Nuggets in Content Delivery. ACM
SIGCOMM Computer Communication Review, 45(3):52–66, 2015.

[34] AjayMahimkar, Carlos Eduardo deAndrade, Rakesh Sinha, andGiritharan Rana. AComposition
Framework for ChangeManagement. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
pages 788–806. ACM, August 2021.

[35] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. The Akamai Network: A Platform for
High-Performance Internet Applications. ACM SIGOPS Operating Systems Review, 44(3):2–19,
2010.

[36] Dejan Grofelnik Pelzel. We’re transforming internet routing: Introducing Bunny DNS!, March
2022. https://bunny.net/blog/transforming-internet-routing-introducing-bunny-dns/.

[37] Geoffrey Plouvier. Introducing Quicksilver: Configuration Distribution at Internet Scale,
March 2020. https://blog.cloudflare.com/introducing-quicksilver-configuration-distribution-
at-internet-scale/.

[38] Racket. The Racket programming language, 2023.
[39] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. FatTire: Declarative fault tolerance

for software-defined networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, page 109–114, New York, NY, USA, 2013.
Association for Computing Machinery.

[40] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS Encrypted Client
Hello. Internet-Draft draft-ietf-tls-esni, Internet Engineering Task Force, October 2023. Work

in Progress.
[41] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V Madhyastha,

Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi Zeng. Engineering Egress
with Edge Fabric: Steering Oceans of Content to the World. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, pages 418–431, 2017.

[42] Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq Muhaimen, and Ramesh K Sitara-
man. Akamai DNS: Providing Authoritative Answers to the World’s Queries. In Proceedings
of the Annual Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Communication, pages
465–478, 2020.

[43] OASIS Standard. extensible access control markup language (xacml) version 3.0. A:(22 January
2013). URl: http://docs. oasis-open. org/xacml/3.0/xacml-3.0-core-spec-os-en. html, 2013.

[44] Ao-Jan Su, David R Choffnes, Aleksandar Kuzmanovic, and Fabian E Bustamante. Draft-
ing Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM
transactions on networking, 17(6):1752–1765, 2009.

[45] Mani Sundaram. Akamai Summarizes Service Disruption (RESOLVED), 2021. https://www.
akamai.com/blog/news/akamai-summarizes-service-disruption-resolved.

[46] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and Hongyi Zeng. Robotron: Top-down
Network Management at Facebook Scale. In Proceedings of the 2016 ACM SIGCOMM Conference,
pages 426–439. ACM, August 2016.

[47] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for solver-aided
host languages. ACM SIGPLAN Notices, 49(6):530–541, 2014.

[48] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and
Zachary Tatlock. Scalable verification of border gateway protocol configurations with an
smt solver. In OOPSLA, page 765–780, New York, NY, USA, 2016. Association for Computing
Machinery.

[49] DavidWragg. Unimog - Cloudflare’s edge load balancer, September 2020. https://blog.cloudflare.
com/unimog-cloudflares-edge-load-balancer.

[50] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holliman, Gary
Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain, Victor Lin, Colin Rice, Brian
Rogan, Arjun Singh, Bert Tanaka, Manish Verma, Puneet Sood, Mukarram Tariq, Matt Tierney,
Dzevad Trumic, Vytautas Valancius, Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin
Vahdat. Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global
Internet Peering. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pages 432–445, Los Angeles CA USA, August 2017. ACM.

[51] Ólafur Guðmundsson. 1.1.1.1 lookup failures on October 4th, 2023, 2023. https://blog.cloudflare.
com/1-1-1-1-lookup-failures-on-october-4th-2023/.

903

https://bunny.net/blog/transforming-internet-routing-introducing-bunny-dns/
https://blog.cloudflare.com/introducing-quicksilver-configuration-distribution-at-internet-scale/
https://blog.cloudflare.com/introducing-quicksilver-configuration-distribution-at-internet-scale/
https://www.akamai.com/blog/news/akamai-summarizes-service-disruption-resolved
https://www.akamai.com/blog/news/akamai-summarizes-service-disruption-resolved
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer
https://blog.cloudflare.com/1-1-1-1-lookup-failures-on-october-4th-2023/
https://blog.cloudflare.com/1-1-1-1-lookup-failures-on-october-4th-2023/

	Abstract
	1 Introduction
	2 Motivation & Background
	2.1 DNS at CDNs
	2.2 A Priori Assignment System Limitations

	3 Introducing Topaz
	3.1 Topaz Policies
	3.2 Topaz-edge
	3.3 Topaz-core
	3.4 Code versus Configuration

	4 Topaz Policies
	4.1 Policy: Service Differentiation
	4.2 Policy: Feature Experimentation
	4.3 Policy: Internet Observability

	5 A Topaz-specific DSL
	5.1 Deploying topaz-lang Policies
	5.2 topaz-lang Syntax
	5.3 Augmentation and Validation

	6 topaz-lang Policy Verification
	6.1 Policy Verification by Example
	6.2 A Formal Model of Topaz Policies
	6.3 Topaz-verifier Implementation

	7 Performance Evaluation
	7.1 Topaz-edge Overheads
	7.2 Topaz Verifier Performance

	8 Experience with Topaz
	8.1 Topaz in Production
	8.2 Lessons Learned: Strengths & Weaknesses
	8.3 Case Studies

	9 Related Work
	10 Conclusion
	11 Acknowledgements
	References

